If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-24x-25=0
a = 9; b = -24; c = -25;
Δ = b2-4ac
Δ = -242-4·9·(-25)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{41}}{2*9}=\frac{24-6\sqrt{41}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{41}}{2*9}=\frac{24+6\sqrt{41}}{18} $
| -10x-26=13x-50 | | 8.4+0.13x=0.32x | | 6-12=1+4a | | -6x+24=72-4x | | 3x+6+5+x=5x-2 | | 3x+6+6+x=5x-2 | | 3x-19=2x-25 | | 7=25–x | | 2. 7=25–x | | 3−7⋅(3+4x)=−1 | | 2(3x+2x-7)=16 | | 3−7⋅(3+4x)= | | 8x-x=6x+3 | | 7x+6=5x +10 | | 4.15-1.29=x | | 4(x+5)^2=36 | | 1. z+5=47 | | 2p-3=-8p-8 | | 2+15-90=x | | (2+15)*x=90 | | (6x-6)+54+90=180 | | 7x+8x=90. | | -2+3x=2x+48 | | 5k-5=-9-9k | | 3−6x=4x+9x= | | (4x+11)+(2x+18)+55=180 | | (2x+12)+90+42=180 | | m/6=41 | | 9x+67+9x-1=180 | | (9x-18)+71+64=180 | | H=-16t^2+55t+6.5 | | (6x-15)+39+90=180 |